Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Haldorai, Anandakumar (Ed.)Darwin Core, the data standard used for sharing modern biodiversity and paleodiversity occurrence records, has previously lacked proper mechanisms for reporting what is known about the estimated age range of specimens from deep time. This has led to data providers putting these data in fields where they cannot easily be found by users, which impedes the reuse and improvement of these data by other researchers. Here we describe the development of the Chronometric Age Extension to Darwin Core, a ratified, community-developed extension that enables the reporting of ages of specimens from deeper time and the evidence supporting these estimates. The extension standardizes reporting about the methods or assays used to determine an age and other critical information like uncertainty. It gives data providers flexibility about the level of detail reported, focusing on the minimum information needed for reuse while still allowing for significant detail if providers have it. Providing a standardized format for reporting these data will make them easier to find and search and enable researchers to pinpoint specimens of interest for data improvement or accumulate more data for broad temporal studies. The Chronometric Age Extension was also the first community-managed vocabulary to undergo the new Biodiversity Informatics Standards (TDWG) review and ratification process, thus providing a blueprint for future Darwin Core extension development.more » « less
-
The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology.more » « less
-
Abstract Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap‐derived Big Data are becoming increasingly solvable with the help of scalable cyber‐infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media‐based and event‐based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in‐depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard.more » « less
An official website of the United States government
